Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1211329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583414

RESUMO

Purpose: Electroretinograms elicited by photopigment isolating white noise stimuli (wnERGs) in mice were measured. The dependency of rod- and cone-opsin-driven wnERGs on mean luminance was studied. Methods: Temporal white noise stimuli (containing all frequencies up to 20 Hz, equal amplitudes, random phases) that modulated either rhodopsin, S-opsin or L*-opsin, using the double silent substitution technique, were used to record wnERGs in mice expressing a human L*-opsin instead of the native murine M-opsin. Responses were recorded at 4 mean luminances (MLs).Impulse response functions (IRFs) were obtained by cross-correlating the wnERG recordings with the corresponding modulation of the photopigment excitation elicited by the stimulus. So-called modulation transfer functions (MTFs) were obtained by performing a Fourier transform on the IRFs.Potentials of two repeated wnERG recordings at corresponding time points were plotted against each other. The correlation coefficient (r2repr) of the linear regression through these data was used to quantify reproducibility. Another correlation coefficient (r2ML) was used to quantify the correlations of the wnERGs obtained at different MLs with those at the highest (for cone isolating stimuli) or lowest (for rod isolating stimuli) ML. Results: IRFs showed an initial negative (a-wave like) trough N1 and a subsequent positive (b-wave like) peak P1. No oscillatory potential-like components were observed. At 0.4 and 1.0 log cd/m2 ML robust L*- and S-opsin-driven IRFs were obtained that displayed similar latencies and dependencies on ML. L*-opsin-driven IRFs were 2.5-3 times larger than S-opsin-driven IRFs. Rhodopsin-driven IRFs were observed at -0.8 and - 0.2 log cd/m2 and decreased in amplitude with increasing ML. They displayed an additional pronounced late negativity (N2), which may be a correlate of retinal ganglion cell activity.R2repr and r2ML values increased for cones with increasing ML whereas they decreased for rods. For rhodopsin-driven MTFs at low MLs and L*-opsin-driven MTFs at high MLs amplitudes decreased with increasing frequency, with much faster decreasing amplitudes for rhodopsin. A delay was calculated from MTF phases showing larger delays for rhodopsin- vs. low delays for L*-opsin-driven responses. Conclusion: Opsin-isolating wnERGs in mice show characteristics of different retinal cell types and their connected pathways.

2.
Mol Biotechnol ; 65(3): 441-445, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35982379

RESUMO

Rhodobacter sphaeroides is a metabolically versatile purple non-sulfur bacteria that can produce valuable substances. As the low-cost and high-efficiency production of valuable substances is attracting attention, the reuse of the medium is emerging as a promising strategy. Therefore, in this study, the growth of R. sphaeroides was evaluated by reusing the medium of Escherichia coli and Saccharomyces cerevisiae. As a result, in the reuse of the medium in which S. cerevisiae was cultured, sufficient growth of R. sphaeroides could be confirmed, and especially, the growth of R. sphaeroides was not inhibited under aerobic conditions. Therefore, it is considered that the strategy of reusing the medium of S. cerevisiae is sufficiently feasible. Of the organic compounds investigated, R. sphaeroides grew best in succinic acid, followed by malic acid, citric acid, acetic acid, and glucose. In addition, by comparing photopigment synthesis in the reused medium, we propose the hypothesis that succinic acid may play an important role in photopigment synthesis for the first time.


Assuntos
Rhodobacter sphaeroides , Saccharomyces cerevisiae , Ácido Succínico , Escherichia coli/genética
4.
Front Neuroanat ; 16: 916510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991966

RESUMO

Cubomedusae, or box jellyfish, have a complex visual system comprising 24 eyes of four types. Like other cnidarians, their photoreceptor cells are ciliary in morphology, and a range of different techniques together show that at least two of the eye types-the image-forming upper and lower lens eyes-express opsin as the photopigment. The photoreceptors of these two eye types express the same opsin (Tc LEO), which belongs to the cnidarian-specific clade cnidops. Interestingly, molecular work has found a high number of opsin genes in box jellyfish, especially in the Caribbean species Tripedalia cystophora, most of which are of unknown function. In the current study, we raised antibodies against three out of five opsins identified from transcriptomic data from T. cystophora and used them to map the expression patterns. These expression patterns suggest one opsin as the photopigment in the slit eyes and another as a putative photoisomerase found in photoreceptors of all four eyes types. The last antibody stained nerve-like cells in the tentacles, in connection with nematocytes, and the radial nerve, in connection with the gonads. This is the first time photopigment expression has been localized to the outer segments of the photoreceptors in a cnidarian ocellus (simple eye). The potential presence of a photoisomerase could be another interesting convergence between box jellyfish and vertebrate photoreceptors, but it awaits final experimental proof.

5.
J Exp Biol ; 225(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35531988

RESUMO

The relationship between genotype and phenotype is non-trivial because of the often complex molecular pathways that make it difficult to unambiguously relate phenotypes to specific genotypes. Photopigments, comprising an opsin apoprotein bound to a light-absorbing chromophore, present an opportunity to directly relate the amino acid sequence to an absorbance peak phenotype (λmax). We examined this relationship by conducting a series of site-directed mutagenesis experiments of retinochrome, a non-visual opsin, from two closely related species: the common bay scallop, Argopecten irradians, and the king scallop, Pecten maximus. Using protein folding models, we identified three amino acid sites of likely functional importance and expressed mutated retinochrome proteins in vitro. Our results show that the mutation of amino acids lining the opsin binding pocket is responsible for fine spectral tuning, or small changes in the λmax of these light-sensitive proteins. Mutations resulted in a blue or red shift as predicted, but with dissimilar magnitudes. Shifts ranged from a 16 nm blue shift to a 12 nm red shift from the wild-type λmax. These mutations do not show an additive effect, but rather suggest the presence of epistatic interactions. This work highlights the importance of binding pocket shape in the evolution of spectral tuning and builds on our ability to relate genotypic changes to phenotypes in an emerging model for opsin functional analysis.


Assuntos
Opsinas , Pectinidae , Animais , Opsinas/genética , Pectinidae/genética , Filogenia , Pigmentos da Retina , Opsinas de Bastonetes/química , Opsinas de Bastonetes/genética
6.
Cell Mol Neurobiol ; 42(1): 59-83, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33231827

RESUMO

In recent decades, a number of novel non-visual opsin photopigments belonging to the family of G protein- coupled receptors, likely involved in a number of non-image-forming processes, have been identified and characterized in cells of the inner retina of vertebrates. It is now known that the vertebrate retina is composed of visual photoreceptor cones and rods responsible for diurnal/color and nocturnal/black and white vision, and cells like the intrinsically photosensitive retinal ganglion cells (ipRGCs) and photosensitive horizontal cells in the inner retina, both detecting blue light and expressing the photopigment melanopsin (Opn4). Remarkably, these non-visual photopigments can continue to operate even in the absence of vision under retinal degeneration. Moreover, inner retinal neurons and Müller glial cells have been shown to express other photopigments such as the photoisomerase retinal G protein-coupled receptor (RGR), encephalopsin (Opn3), and neuropsin (Opn5), all able to detect blue/violet light and implicated in chromophore recycling, retinal clock synchronization, neuron-to-glia communication, and other activities. The discovery of these new photopigments in the inner retina of vertebrates is strong evidence of novel light-regulated activities. This review focuses on the features, localization, photocascade, and putative functions of these novel non-visual opsins in an attempt to shed light on their role in the inner retina of vertebrates and in the physiology of the whole organism.


Assuntos
Opsinas , Retina , Animais , Opsinas/fisiologia , Células Ganglionares da Retina , Células Fotorreceptoras Retinianas Bastonetes , Vertebrados
7.
Genes (Basel) ; 12(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34440353

RESUMO

Light absorption by photopigment molecules expressed in the photoreceptors in the retina is the first step in seeing. Two types of photoreceptors in the human retina are responsible for image formation: rods, and cones. Except at very low light levels when rods are active, all vision is based on cones. Cones mediate high acuity vision and color vision. Furthermore, they are critically important in the visual feedback mechanism that regulates refractive development of the eye during childhood. The human retina contains a mosaic of three cone types, short-wavelength (S), long-wavelength (L), and middle-wavelength (M) sensitive; however, the vast majority (~94%) are L and M cones. The OPN1LW and OPN1MW genes, located on the X-chromosome at Xq28, encode the protein component of the light-sensitive photopigments expressed in the L and M cones. Diverse haplotypes of exon 3 of the OPN1LW and OPN1MW genes arose thru unequal recombination mechanisms that have intermixed the genes. A subset of the haplotypes causes exon 3- skipping during pre-messenger RNA splicing and are associated with vision disorders. Here, we review the mechanism by which splicing defects in these genes cause vision disorders.


Assuntos
Éxons , Splicing de RNA , Opsinas de Bastonetes/genética , Transtornos da Visão/genética , Haplótipos , Humanos , Retina/metabolismo
8.
Vision Res ; 188: 126-138, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34315092

RESUMO

Following photopigment bleaching, the rhodopsin and cone-opsins show a characteristic exponential regeneration in the dark with a photocycle dependent on the retinal pigment epithelium. Melanopsin pigment regeneration in animal models requires different pathways to rods and cones. To quantify melanopsin-mediated light adaptation in humans, we first estimated its photopigment regeneration kinetics through the photo-bleach recovery of the intrinsic melanopsin pupil light response (PLR). An intense broadband light (~120,000 Td) bleached 43% of melanopsin compared to 86% of the cone-opsins. Recovery from a 43% bleach was 3.4X slower for the melanopsin than cone-opsin. Post-bleach melanopsin regeneration followed an exponential growth with a 2.5 min time-constant (τ) that required 11.2 min for complete recovery; the half-bleaching level (Ip) was ~ 4.47 log melanopic Td (16.10 log melanopsin effective photons.cm-2.s-1; 8.25 log photoisomerisations.photoreceptor-1.s-1). The effect on the cone-directed PLR of the level of the melanopsin excitation during continuous light adaptation was then determined. We observed that cone-directed pupil constriction amplitudes increased by ~ 10% when adapting lights had a higher melanopic excitation but the same mean photometric luminance. Our findings suggest that melanopsin light adaptation enhances cone signalling along the non-visual retina-brain axis. Parameters τ and Ip will allow estimation of the level of melanopsin bleaching in any light units; the data have implications for quantifying the relative contributions of putative melanopsin pathways to regulate the post-bleach photopigment regeneration and adaptation.


Assuntos
Fotodegradação , Células Fotorreceptoras Retinianas Bastonetes , Opsinas de Bastonetes , Adaptação Ocular , Adaptação à Escuridão , Humanos , Luz , Células Fotorreceptoras Retinianas Cones , Opsinas de Bastonetes/efeitos da radiação
9.
J Ophthalmic Vis Res ; 16(2): 291-294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055266

RESUMO

PURPOSE: To present the second case of photopigment bleaching phenomenon in fluorescein angiography (FA) and the first case of this phenomenon due to impending central retinal vein occlusion (CRVO). CASE REPORT: A 32-year-old healthy female noticed blurred vision in her right eye one day before presentation. Despite the 20/20 visual acuity at presentation, mild increased retinal vascular tortuosity and unilateral photopigment bleaching phenomenon in FA was observed in the right eye. Three weeks later, she developed a complete CRVO with visual acuity reduction to 20/40 that responded well to the intravitreal injection of aflibercept. CONCLUSION: Impending CRVO can cause unilateral photopigment bleaching phenomenon in FA that may be due to retinal ischemia.

10.
Vision Res ; 185: 77-87, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33962212

RESUMO

Deuteranomalous color matching behavior is different from normal because the middle-wavelength sensitive cones contain an abnormal L' pigment instead of the M pigment of the normal observer. However, there is growing evidence that deuteranomalous color experience is not very different from that of normal trichromats. Here, normal and deuteranomalous observers chose monochromatic unique yellow lights. They also chose broadband lights, displayed on a computer monitor, that corresponded to eight special colors: the Hering unique hues (red, yellow, green, blue), and binary colors perceptually midway between them (orange, lime, cyan, purple). Deuteranomalous monochromatic unique yellow was shifted towards red, but all the broadband special color selections were physically similar for normal and deuteranomalous observers. Deuteranomalous special colors, including monochromatic unique yellow, were similar to those of normal observers when expressed in a color-opponent chromaticity diagram based on their own visual pigments, but only if (1) color-opponent responses were normalized to white, and (2) the deuteranomalous diagram was expanded along the r - g dimension to compensate for the reduced difference between deuteranomalous L- and L'-cone photopigments. Particularly, deuteranomalous observers did not choose binary colors with extra r - g impact to overcome their insensitivity along the r - g dimension. This result can only be compatible with the known abnormality of the deuteranomalous L' photopigment if deuteranomalous observers adjust their perceptual representation of colors to compensate for their color vision deficiency.


Assuntos
Percepção de Cores , Defeitos da Visão Cromática , Cor , Humanos , Células Fotorreceptoras Retinianas Cones , Pigmentos da Retina
11.
Handb Clin Neurol ; 178: 131-153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33832674

RESUMO

Color is a fundamental aspect of normal visual experience. This chapter provides an overview of the role of color in human behavior, a survey of current knowledge regarding the genetic, retinal, and neural mechanisms that enable color vision, and a review of inherited and acquired defects of color vision including a discussion of diagnostic tests.


Assuntos
Defeitos da Visão Cromática , Visão de Cores , Humanos , Retina
12.
Front Physiol ; 11: 1002, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922310

RESUMO

One of the key defining features of an endogenous circadian clock is that it can be entrained or set to local time. Though a number of cues can perform this role, light is the predominant environmental signal that acts to entrain circadian pacemakers in most species. For the past 20 years, a great deal of work has been performed on the light input pathway in mammals and the role of intrinsically photosensitive retinal ganglion cells (ipRGCs)/melanopsin in detecting and sending light information to the suprachiasmatic nucleus (SCN). In teleost fishes, reptiles and birds, the biology of light sensitivity is more complicated as cells and tissues can be directly light responsive. Non-visual light signalling was described many years ago in the context of seasonal, photoperiodic responses in birds and lizards. In the case of teleosts, in particular the zebrafish model system, not only do peripheral tissues have a circadian pacemaker, but possess clear, direct light sensitivity. A surprisingly wide number of opsin photopigments have been described within these tissues, which may underpin this fundamental ability to respond to light, though no specific functional link for any given opsin yet exists. In this study, we show that zebrafish cells show wide spectral sensitivities, as well as express a number of opsin photopigments - several of which are under direct clock control. Furthermore, we also show that light outside the visual range, both ultraviolet and infrared light, can induce clock genes in zebrafish cells. These same wavelengths can phase shift the clock, except infrared light, which generates no shift even though genes such as per2 and cry1a are induced.

13.
Braz. j. med. biol. res ; 53(1): e8389, Jan. 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1055479

RESUMO

Photodynamic therapy (PDT) promotes cell death, and it has been successfully employed as a treatment resource for neuropathic complications of diabetes mellitus (T1DM) and hepatocellular carcinoma. The liver is the major organ involved in the regulation of energy homeostasis, and in pathological conditions such as T1DM, changes in liver metabolic pathways result in hyperglycemia, which is associated with multiple organic dysfunctions. In this context, it has been suggested that chlorophyll-a and its derivatives have anti-diabetic actions, such as reducing hyperglycemia, hyperinsulinemia, and hypertriglyceridemia, but these effects have not yet been proven. Thus, the biological action of PDT with chlorophyll-a on hepatic parameters related to energy metabolism and oxidative stress in T1DM Wistar rats was investigated. Evaluation of the acute effects of this pigment was performed by incubation of isolated hepatocytes with chlorophyll-a and the chronic effects were evaluated by oral treatment with chlorophyll-based extract, with post-analysis of the intact liver by in situ perfusion. In both experimental protocols, chlorophyll-a decreased hepatic glucose release and glycogenolysis rate and stimulated the glycolytic pathway in DM/PDT. In addition, there was a reduction in hepatic oxidative stress, noticeable by decreased lipoperoxidation, reactive oxygen species, and carbonylated proteins in livers of chlorophyll-treated T1DM rats. These are indicators of the potential capacity of chlorophyll-a in improving the status of the diabetic liver.


Assuntos
Animais , Masculino , Ratos , Clorofila/análogos & derivados , Fármacos Fotossensibilizantes/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Glicólise/efeitos dos fármacos , Fígado/fisiopatologia , Fotoquimioterapia , Clorofila/administração & dosagem , Ratos Wistar , Estresse Oxidativo/fisiologia , Diabetes Mellitus Experimental/patologia , Quimioterapia Combinada , Metabolismo Energético/efeitos dos fármacos , Glicólise/fisiologia , Fígado/patologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-31691095

RESUMO

Light is the most important Zeitgeber for entraining animal activity rhythms to the 24-h day. In all animals, the eyes are the main visual organs that are not only responsible for motion and colour (image) vision, but also transfer light information to the circadian clock in the brain. The way in which light entrains the circadian clock appears, however, variable in different species. As do vertebrates, insects possess extraretinal photoreceptors in addition to their eyes (and ocelli) that are sometimes located close to (underneath) the eyes, but sometimes even in the central brain. These extraretinal photoreceptors contribute to entrainment of their circadian clocks to different degrees. The fruit fly Drosophila melanogaster is special, because it expresses the blue light-sensitive cryptochrome (CRY) directly in its circadian clock neurons, and CRY is usually regarded as the fly's main circadian photoreceptor. Nevertheless, recent studies show that the retinal and extraretinal eyes transfer light information to almost every clock neuron and that the eyes are similarly important for entraining the fly's activity rhythm as in other insects, or more generally spoken in other animals. Here, I compare the light input pathways between selected insect species with a focus on Drosophila's special case.


Assuntos
Ritmo Circadiano , Olho Composto de Artrópodes/fisiologia , Drosophila melanogaster/fisiologia , Fotoperíodo , Células Fotorreceptoras de Invertebrados/fisiologia , Visão Ocular , Percepção Visual , Animais , Olho Composto de Artrópodes/citologia , Olho Composto de Artrópodes/metabolismo , Criptocromos/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Luz , Estimulação Luminosa , Células Fotorreceptoras de Invertebrados/metabolismo , Pigmentos da Retina/metabolismo , Especificidade da Espécie , Vias Visuais/fisiologia
15.
Elife ; 82019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31635694

RESUMO

Animals detect light using opsin photopigments. Xenopsin, a recently classified subtype of opsin, challenges our views on opsin and photoreceptor evolution. Originally thought to belong to the Gαi-coupled ciliary opsins, xenopsins are now understood to have diverged from ciliary opsins in pre-bilaterian times, but little is known about the cells that deploy these proteins, or if they form a photopigment and drive phototransduction. We characterized xenopsin in a flatworm, Maritigrella crozieri, and found it expressed in ciliary cells of eyes in the larva, and in extraocular cells around the brain in the adult. These extraocular cells house hundreds of cilia in an intra-cellular vacuole (phaosome). Functional assays in human cells show Maritigrella xenopsin drives phototransduction primarily by coupling to Gαi. These findings highlight similarities between xenopsin and c-opsin and reveal a novel type of opsin-expressing cell that, like jawed vertebrate rods, encloses the ciliary membrane within their own plasma membrane.


Assuntos
Peptídeos/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Platelmintos/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Encéfalo , Membrana Celular/metabolismo , Evolução Molecular , Olho/citologia , Olho/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP , Humanos , Larva , Transdução de Sinal Luminoso/fisiologia , Opsinas/classificação , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras/citologia , Células Fotorreceptoras/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Filogenia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Alinhamento de Sequência , Análise de Sequência de Proteína
16.
BMC Evol Biol ; 19(1): 174, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462236

RESUMO

BACKGROUND: A number of non-visual responses to light in vertebrates, such as circadian rhythm control and pupillary light reflex, are mediated by melanopsins, G-protein coupled membrane receptors, conjugated to a retinal chromophore. In non-mammalian vertebrates, melanopsin expression is variable within the retina and extra-ocular tissues. Two paralog melanopsin genes were classified in vertebrates, Opn4x and Opn4m. Snakes are highly diversified vertebrates with a wide range of daily activity patterns, which raises questions about differences in structure, function and expression pattern of their melanopsin genes. In this study, we analyzed the melanopsin genes expressed in the retinas of 18 snake species from three families (Viperidae, Elapidae, and Colubridae), and also investigated extra-retinal tissue expression. RESULTS: Phylogenetic analysis revealed that the amplified gene belongs to the Opn4x group, and no expression of the Opn4m was found. The same paralog is expressed in the iris, but no extra-ocular expression was detected. Molecular evolutionary analysis indicated that melanopsins are evolving primarily under strong purifying selection, although lower evolutionary constraint was detected in snake lineages (ω = 0.2), compared to non-snake Opn4x and Opn4m (ω = 0.1). Statistical analysis of selective constraint suggests that snake phylogenetic relationships have driven stronger effects on melanopsin evolution, than the species activity pattern. In situ hybridization revealed the presence of melanopsin within cells in the outer and inner nuclear layers, in the ganglion cell layer, and intense labeling in the optic nerve. CONCLUSIONS: The loss of the Opn4m gene and extra-ocular photosensitive tissues in snakes may be associated with a prolonged nocturnal/mesopic bottleneck in the early history of snake evolution. The presence of melanopsin-containing cells in all retinal nuclear layers indicates a globally photosensitive retina, and the expression in classic photoreceptor cells suggest a regionalized co-expression of melanopsin and visual opsins.


Assuntos
Proteínas de Répteis/genética , Retina/metabolismo , Opsinas de Bastonetes/genética , Serpentes/genética , Animais , Relógios Circadianos , Evolução Molecular , Regulação da Expressão Gênica , Filogenia , Opsinas de Bastonetes/fisiologia , Serpentes/classificação , Serpentes/fisiologia , Visão Ocular
17.
Cell Mol Life Sci ; 75(19): 3609-3624, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29700553

RESUMO

Melanopsin is a blue light-sensitive opsin photopigment involved in a range of non-image forming behaviours, including circadian photoentrainment and the pupil light response. Many naturally occurring genetic variants exist within the human melanopsin gene (OPN4), yet it remains unclear how these variants affect melanopsin protein function and downstream physiological responses to light. Here, we have used bioinformatic analysis and in vitro expression systems to determine the functional phenotypes of missense human OPN4 variants. From 1242 human OPN4 variants collated in the NCBI Short Genetic Variation database (dbSNP), we identified 96 that lead to non-synonymous amino acid substitutions. These 96 missense mutations were screened using sequence alignment and comparative approaches to select 16 potentially deleterious variants for functional characterisation using calcium imaging of melanopsin-driven light responses in HEK293T cells. We identify several previously uncharacterised OPN4 mutations with altered functional properties, including attenuated or abolished light responses, as well as variants demonstrating abnormal response kinetics. These data provide valuable insight into the structure-function relationships of human melanopsin, including several key functional residues of the melanopsin protein. The identification of melanopsin variants with significantly altered function may serve to detect individuals with disrupted melanopsin-based light perception, and potentially highlight those at increased risk of sleep disturbance, circadian dysfunction, and visual abnormalities.


Assuntos
Mutação de Sentido Incorreto/fisiologia , Opsinas de Bastonetes/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/fisiologia , Cálcio/farmacocinética , Membrana Celular/metabolismo , Ritmo Circadiano/genética , Análise Mutacional de DNA , Células HEK293 , Humanos , Imagem Óptica , Polimorfismo de Nucleotídeo Único/fisiologia , Transporte Proteico/genética , Opsinas de Bastonetes/química , Opsinas de Bastonetes/metabolismo , Transtornos do Sono do Ritmo Circadiano/genética , Relação Estrutura-Atividade , Transtornos da Visão/genética
18.
Cell ; 167(5): 1252-1263.e10, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863243

RESUMO

Many animal tissues/cells are photosensitive, yet only two types of photoreceptors (i.e., opsins and cryptochromes) have been discovered in metazoans. The question arises as to whether unknown types of photoreceptors exist in the animal kingdom. LITE-1, a seven-transmembrane gustatory receptor (GR) homolog, mediates UV-light-induced avoidance behavior in C. elegans. However, it is not known whether LITE-1 functions as a chemoreceptor or photoreceptor. Here, we show that LITE-1 directly absorbs both UVA and UVB light with an extinction coefficient 10-100 times that of opsins and cryptochromes, indicating that LITE-1 is highly efficient in capturing photons. Unlike typical photoreceptors employing a prosthetic chromophore to capture photons, LITE-1 strictly depends on its protein conformation for photon absorption. We have further identified two tryptophan residues critical for LITE-1 function. Interestingly, unlike GPCRs, LITE-1 adopts a reversed membrane topology. Thus, LITE-1, a taste receptor homolog, represents a distinct type of photoreceptor in the animal kingdom.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Membrana/metabolismo , Animais , Caenorhabditis elegans/efeitos da radiação , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/isolamento & purificação , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Fótons , Conformação Proteica , Triptofano/metabolismo , Raios Ultravioleta
19.
Exp Eye Res ; 140: 10-18, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26277581

RESUMO

PURPOSE: Heterochromatic flicker photometry (HFP) is commonly used to determine macular pigment optical density (MPOD). Since HFP in this application is a locus comparison method, an identical relative spectral response at each locus is required for a perfect measure. We know this requirement cannot be strictly true since the optical density of photopigments increases as the foveal center is approached. Thus, the self-screening effect would result in an underestimate of MPOD. An earlier study concluded that the underestimate is on the order of 30%. We examined this issue by manipulating photopigment optical density, and consequently the degree of selfscreening. METHODS: A continuously exposed, 470 nm, background bleached cone photopigments over a range from 0 to 80%. MPOD was determined 10' and 30' from the foveal center. Two subjects were used in the main experiment. Five additional subjects were studied with just the 0% and 80% bleach levels. Spectral measures were obtained at 0% and 70% bleach levels for the two primary subjects. RESULTS: Subjects in the main experiment showed MPOD estimates that increased with increasing bleaching. The effect, however, was small: one observer's MPOD increased 0.08 and 0.02 for the 10' and 30' loci, respectively; the other observer's values were 0.04 and 0.01 for the same loci. Comparable values were obtained for the other five subjects using the 0% and 80% bleach conditions. Spectral measures were consistent with the findings of the main experiment. CONCLUSIONS: When self-screening is nearly abolished (80% bleach), a relatively small underestimation is revealed for the unbleached state. For the 1° target we show about 2-3% underestimation. Our 20' target reveals a larger underestimate (8-9%), consistent with longer photoreceptor outer-segments nearer the foveal center. We conclude that HFP yields values essentially independent of self-screening for targets of 1° diameter or greater. Smaller targets are less than 10% underestimated for near-zero bleach conditions.


Assuntos
Pigmento Macular/metabolismo , Fotometria/métodos , Segmento Externo das Células Fotorreceptoras da Retina/fisiologia , Autocuidado/métodos , Densitometria/instrumentação , Feminino , Humanos , Luz , Luteína/metabolismo , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Segmento Externo das Células Fotorreceptoras da Retina/efeitos da radiação , Adulto Jovem , Zeaxantinas/metabolismo
20.
Poult Sci ; 94(4): 786-98, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25828571

RESUMO

In the eyes of mammals, specialized photoreceptors called intrinsically photosensitive retinal ganglion cells (ipRGC) have been identified that sense photoperiodic or daylight exposure, providing them over time with seasonal information. Detectors of photoperiods are critical in vertebrates, particularly for timing the onset of reproduction each year. In birds, the eyes do not appear to monitor photoperiodic information; rather, neurons within at least 4 different brain structures have been proposed to function in this capacity. Specialized neurons, called deep brain photoreceptors (DBP), have been found in the septum and 3 hypothalamic areas. Within each of the 4 brain loci, one or more of 3 unique photopigments, including melanopsin, neuropsin, and vertebrate ancient opsin, have been identified. An experiment was designed to characterize electrophysiological responses of neurons proposed to be avian DBP following light stimulation. A second study used immature chicks raised under short-day photoperiods and transferred to long day lengths. Gene expression of photopigments was then determined in 3 septal-hypothalamic regions. Preliminary electrophysiological data obtained from patch-clamping neurons in brain slices have shown that bipolar neurons in the lateral septal organ responded to photostimulation comparable with mammalian ipRGC, particularly by showing depolarization and a delayed, slow response to directed light stimulation. Utilizing real-time reverse-transcription PCR, it was found that all 3 photopigments showed significantly increased gene expression in the septal-hypothalamic regions in chicks on the third day after being transferred to long-day photoperiods. Each dissected region contained structures previously proposed to have DBP. The highly significant increased gene expression for all 3 photopigments on the third, long-day photoperiod in brain regions proposed to contain 4 structures with DBP suggests that all 3 types of DBP (melanopsin, neuropsin, and vertebrate ancient opsin) in more than one neural site in the septal-hypothalamic area are involved in reproductive function. The neural response to light of at least 2 of the proposed DBP in the septal/hypothalamic region resembles the primitive, functional, sensory ipRGC well characterized in mammals.


Assuntos
Aves/fisiologia , Encéfalo/efeitos da radiação , Gônadas/crescimento & desenvolvimento , Sistemas Neurossecretores/efeitos da radiação , Células Fotorreceptoras/efeitos da radiação , Animais , Aves/genética , Encéfalo/fisiologia , Regulação da Expressão Gênica , Gônadas/efeitos da radiação , Sistemas Neurossecretores/fisiologia , Células Fotorreceptoras/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA